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Abstract. This discussion paper for the SGO 2001 Workshop considers the process of
investigating stochastic global optimization algorithms. It outlines a general plan for the

systematic study of their behavior. It raises questions about performance criteria, character-
istics of test cases and classification of algorithms.

1. Introduction

This paper is a discussion document which preceded the SGO 2001 Work-
shop. We are interested in properties of Global Optimization (GO) algo-
rithms and their interrelation with the mathematical structure of GO
problems. The goal is to understand which methods are best suited to
which type of practical optimization problem. The purpose of this paper is
to ask questions and engender discussion. It is hoped that some of the
aspects discussed in this paper will be further investigated at the workshop.
An outline of discussion topics is: Section 2 – general overview; section 3

– performance criteria; section 4 – characteristics of test cases; section 5 –
classification of algorithms; and section 6 – summary and discussion points.

2. General Overview

We are interested in studying the behavior of algorithms in a systematic
way. To do this we need a plan and agreed upon factors.

2.1. PLAN

1. Formulation of performance criteria.
2. Description of the algorithm(s) under investigation.
3. Selection of appropriate algorithm parameters.
4. Production of test functions (instances, special cases) corresponding

to certain landscape structures or characteristics.
5. Analysis of its theoretical performance, or empirical testing.
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Figure 1 depicts some relevant aspects.

2.2. EXAMPLE

1. Performance criterion: The probability P of ‘‘hitting’’ a global opti-
mum.

2. The algorithm: Pure Random Search on a compact robust set where
trial points are generated unifomly from the set.

3. Parameters: N the number of trial points.
4. Test functions: Make functions with specific value for VðBdðS�ÞÞ

VðXÞ , the rel-
ative volume of the d-neighborhood of all global minimum points.

5. Analysis:

P ¼ 1� 1� VðBdðS�ÞÞ
VðXÞ

� �N

ð1Þ

Apparently the assumed target of a user is to reach one global mini-
mum point. The search is assumed successful when the record value hits a
d-neighborhood of a global minimum point and the researcher has formu-
lated as a performance criterion the probability of success. Alternatively,
the success could be defined as being in an �-level set from the global mini-
mum value f �, where the probability of success becomes:

P ¼ 1� ð1� lðf � þ �ÞÞN ð2Þ
depending on the relative size l of the �þ f �-level set as a characteristic of
the problem to be solved.
The main theme is that all aspects must be considered together, as is

now detailed.

2.3. PERFORMANCE CRITERIA

In section 3, we discuss performance criteria that are used in Global opti-
mization. We do not expect to find one universal criterion, but are inter-
ested in a variety and the interrelationships between them. Moreover, we
describe a tool which we call the Performance Graph.
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Figure 1. Aspects in investigating stochastic global optimization algorithms.
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2.4. CHARACTERISTICS

Experimentally an algorithm is often run over several test functions and its
performance compared to other algorithms and/or other parameter set-
tings. To understand behavior we need to study the relationships to char-
acteristics of landscapes of test functions. The main question is how to
define appropriate characteristics. We will discuss some ideas which appear
in the literature in section 4. The main idea is that relevant characteristics
depend on the type of algorithm as well as on the performance measure. In
the previous example only the relative size of the sought for region matters,
and characteristics such as the shape of regions of attraction, the form of
the finite level sets, and barriers in the landscape do not matter.

2.5. ALGORITHMS

An interesting discussion and classification of algorithms can be found in
[12]. According to [5], one can roughly distinguish two major approaches:

� Deterministic methods which guarantee to approach the global opti-
mum and require a certain mathematical structure.
� Stochastic methods which are based on the random generation of fea-
sible trial points and nonlinear local optimization procedures.

In this discussion paper, the focus is on stochastic optimization procedures,
although many concepts are more generally applicable. General stochastic
algorithms require no structural information about the problem. One of
the most generic descriptions is that of Törn and Zilinskas [12] in which xk
are chosen stochastically in sequence according to the general equation:

xkþ1 ¼ Algðxk; xk�1; . . . ; x0; nÞ ð3Þ
where n is a random variable.
We do not think a generic stochastic algorithm is directly useful for prac-

tical problems. However, one can adapt algorithms to make use of struc-
tural information. Moreover, one should notice, that even if structural
information is not available, other so-called value information, becomes
available when running algorithms. For example: the number of local
optima found thus far, the average number of function evaluations neces-
sary for one local search, the best function value found, and the behavior of
the local search, etc. Such indicators can be measured empirically and can
be used to get insight into what factors determine the behavior of a particu-
lar algorithm and perhaps can be used to improve the performance of an
algorithm.
Can we come to a classification of stochastic global optimization algo-

rithms? We look at this further in section 5.
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3. Performance criteria

There are two questions to address.

� Effectiveness: does the algorithm find what we want?
� Efficiency: what are the computational costs?

The GO literature looks at each separately. We suggest a good criterion
needs to combine both. We suggest the performance graph for studying
and picturing the trade-off between the two main criteria.
Over the last 10 years, starting from the early works of Dixon and Szegö

[3] and following publications in the Journal of Global Optimization, the
main study of effectiveness is to that show when effort goes to infinity, a
point is generated in a neighborhood of global minimum point with proba-
bility one. Analytically this main property can be derived whenever a
designed algorithm is allowed to sample everywhere in the feasible area
with a certain probability. In general with stochastic methods, we need
many repetitions to measure performance criteria, in order to average out
the stochasticity.
Empirically, by means of test functions, one can measure how many times

the global optimum has been reached by a certain algorithm. In this context,
simulation, experiments or computational results can explore performance.
Efficiency can also be measured empirically. The expected number of

function evaluations necessary to reach a particular level of convergence, is
taken. In the literature experimental results are presented as tables where
several algorithms (or one algorithm with several parameter settings) are
run over some test functions and the required number of function evalua-
tions to reach the global optimum is reported.

3.1. TARGETS

What are other good ways to define the performance of an algorithm?
Focusing on effectiveness there are several targets a user of the algorithm
could have in mind:

1. To discover all global minimum points. This of course can only be
realized when the number of global minimum points is finite.

2. To detect at least one global optimal point.
3. To find a solution with an ‘‘acceptably low’’ function value.
4. To produce a uniform covering: This idea as introduced by Klepper

and Hendrix [6, 10], is that the final population of a population based
algorithm should resemble a sample from a uniform distribution over
a level set with a predefined level. The practical relevance is due to
identification problems in parameter estimation. Simple performance
indicators as to how well this has been achieved are difficult to con-
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struct. Usually one partitions the final region in subsets and sums the
deviations from the expected number of points in each partition set.

The first and second targets are typical satisfaction targets. Namely, was
the search successful or not? What are good measures of success? In the
older literature, often convergence was used. If we want to make results
comparable, we need to be more explicit in our definitions of success. We
need to address the following questions:

� What is considered ‘‘low’’, a predefined level, a percentile of the func-
tion range, or a d-neighborhood of the global minimum point(s)?
� When the record of the search process hits a ‘‘low’’ level set, did it
‘‘see’’ the minimum only once or repeatedly?
� Does the process converge to a minimum point (or in population algo-
rithms around several minimum points) to give the user a feeling this
is really a minimum point?

3.2. EFFICIENCY

Globally, efficiency is defined as the effort the algorithm needs to be suc-
cessful. A usual indicator in stochastic algorithms is the (expected) number
of function evaluations necessary to reach the optimum. This indicator
depends on many factors such as the shape of the test function and the ter-
mination criteria used. By making more and more assumptions on the
behavior of the algorithm, one can come up with the complete distribution
of number of function evaluations necessary to reach the optimum.
An alternative efficiency indicator is the Success Rate [7] defined as the

probability that the next iterate is an improvement on the record value
found thus far. Its relevance to convergence speed was analyzed by Zabin-
sky and Smith [13] and Baritompa et al. [1], who showed that a fixed suc-
cess rate of an effective algorithm (in the sense of uniform covering) gives
an algorithm with the expected number of function evaluations growing
polynomially with the dimension of the problem. However, the empirical
measurements can only be established in the limit when such an algorithm
stabilizes, and only for specifically designed test cases.

3.3. PERFORMANCE GRAPH

Analytical studies often aim at showing the algorithm is successful in the
limit. In no realistic situation is a user going to use infinite effort! The
question is really how to measure the performance for cases where the user
has a finite amount of time (in [4] called a budget) to obtain a solution.
We introduce the concept of a Performance Graph. If success is Boolean,
the graph plots the probability of success (depending on the success
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indicator) versus the effort required. An example [4] is given in Figure 2;
an estimate is given of the probability of success,1 based on running algo-
rithms over many repetitions for a given amount of function evaluations.
Note quite a few aspects of a method can be seen from the performance
graph. For example the method called SIS become marginally ineffective.
The method called MUS is better than method 10 for low effort.
In a non-boolean case like target three, the performance graph plots the

average of observed values of the goal versus effort. An example is given
in Figure 3. With sufficient assumptions, a theoretical analysis of a stochas-
tic method could compute the exact expected value. In that case the perfor-
mance graph would plot the expected value versus effort.

3.4. RELATION BETWEEN CRITERIA

The performance graph emphasizes the relationship between success and
effort. In other studies the focus is on the distribution of effort for a speci-
fied degree of success (or convergence). How are those two concepts
related? In particular if success is defined as seeing a point in the level-set
SðyÞ, as we move the level y upwards, the graph giving the probability of
success slowly moves upwards. How does this relate to the performance
graph? What is the relation with the graph which measures the expected
(or distribution of the) record values? Can a performance graph be derived
analytically from a given success rate (fixed rate of improvement)?
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Figure 2. Probability of reaching the optimum for the Shekel-5 function and several algorithms

given a number of function evaluations.

1Success in this example was defined as the record being in a neighborhood of the one global

minimum point.
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3.5. COMPARISON OF ALGORITHMS

When comparing algorithms, a specific algorithm is dominated if there is
another algorithm which performs better (e.g. has a higher performance
graph) in all possible cases under consideration. Usually however, one
algorithm runs better on some cases and another on other cases (e.g. in
Figures 2 and 3, where algorithm MUS does best on the Shekel-5 function,
but there are better ones on the Rastrigin function).
So basically the performance of algorithms can be compared on the

same test function, or preferably for many test functions with the same
characteristic, where that characteristic is the only parameter that matters
for the performance of the compared algorithm. As we have seen in section
4, it may be very hard to find out such determination characteristics. The
following principles can be useful:

� Comparability: when comparing several algorithms they should all
make use of the same type of (structural) information (same stopping
criteria, accuracies etc).
� Simple references: it is wise to include in the comparison simple bench-
mark algorithms such as Pure Random Search, Multi-start and Pure
Adaptive Search in order not to let analysis of the outcomes get lost
in parameter tuning and complicated schemes.

Often in the literature we see algorithms applied for solving ‘‘practical’’
problems. If we are comparing algorithms for a practical problem, we
should keep in mind this is only one problem and up to now, nobody has
defined what is a representative practical problem.
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Figure 3. Average record value reached by 5 different algorithms for a given number of function

evaluations for the Rastrigin test function.
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4. Characteristics of Test Cases

As empirical results depend on the test functions under consideration, we
need to look carefully at the structure of the functions and their corre-
sponding landscapes. Which factors determine the performance? As in
design of experiments, one should construct extreme test cases (best or
worst) to aid investigation of suspected relations.

4.1. EUCLIDEAN LANDSCAPE IS MISLEADING

Intuition gleaned from thinking about graphs of real valued functions of
two variables, whose graphs are surfaces resembling landscapes found in
our ‘‘Euclidean’’ world, is of limited value. The language of hills and val-
leys, needs to be extended to higher dimensions. We should try to think
more abstractly and see the landscape from the perspective of the algo-
rithm and its assumed neighborhood structure.
For pure random search, the next generated point does not depend on

the current iterate and therefore we must consider all points to be in the
neighborhood of the current iterate. In this perspective local non-global
optima do not exist. We should redefine the neighborhood structure as all
points which can be reached (with non-zero probability) from a certain
point given the operation of the algorithm given by (3).
This requires a new topological structure. If we could define it, we would

get to the heart of what are relevant characteristics to measure. It is a chal-
lenge to see algorithms and spaces from this perspective. A particularly
challenging question is how to define the relevant geometry to study popu-
lation based algorithms.

4.2. SPECIFIC CONSIDERATIONS

It will be important to vary the test cases systematically between the
extreme cases, in order to understand how algorithms behave. In an experi-
mental setting, depending on what one measures, one tries to design experi-
ments which yield as much information as possible. However, to derive
analytical results, it is not uncommon to make highly specific assumptions
which make the analysis tractable. For example:

� To study the limit behavior for a unique optimum, the spherical or
conical form of the function is assumed.
� To illustrate complexity, the concave quadratic problem over a hyper-
cube has been used. There the number of local optima ð2nÞ increases
exponentially in the dimension n.
� In nonlinear optimization the condition number of the Hessian at the
minimum point is often specified, as it influences efficiency of local
nonlinear optimization algorithms.
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When studying cases we should keep in mind that in the GO literature
the following types of problems have been investigated.

� Black box case: in this case it is assumed that nothing is known about
the function to be optimized. Often the feasible set is defined as a box,
but information about the objective function can only be obtained by
evaluating the function at feasible points. This is also called the oracle
case.
� Grey box case: something is known about the function, but the explicit
form is not necessarily given. We may have a lower bound on the
function value or the number of global and/or local optima. As have
proven useful for deterministic methods, we may have structural infor-
mation such as: the function is concave, a Lipschitz constant is known,
a d.c.-decomposition is known. Stochastic methods often do not use
this type of information, but it may be used to derive analytical or
experimental results.
� White box case: explicit analytical expressions of the problem to be
solved are assumed to be available. Specifically interval arithmetic
algorithms require this point of view on the problem to be solved.

When looking at the structure of the instances for which we study the
behavior of the algorithm we should keep two things in mind:

� In experiments the researcher can try to influence the characteristics of
the test cases such that the effect on what is measured is as big as pos-
sible. Note that the experimentalist knows the structure in advance,
but the algorithm does not.
� The algorithm can try to generate information which tells it about the
landscape of the problems.

4.3. COMPLICATING FACTORS

A difficulty in the analysis of a GO algorithm in the multi-extremal case is,
that everything seems to influence behavior:

� the orientation of components of lower level sets with respect to each
other determine how iterates can jump from one place to the other.
� the number of local optima up in the ‘‘hills’’ determine how algorithms
may get stuck in local optima.
� the difference between the global minimum and the next lowest mini-
mum affects the possibility to detect the global minimum point.
� the steepness around minimum points, valleys, creeks etc. which deter-
mine the landscape determine the success.
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However, we stress, as shown in our first example, the characteristics
which are important for the behavior depend on the type of algorithm and
the performance criteria that describe the behavior.
So in every analytical and experimental investigation of an algorithm we

should be concerned with the type of characteristics which matter for the
algorithm and performance criterion under consideration. Can we classify
this? We suggest for various classes of methods the following:

� Multi-start type algorithms: size of regions of attractions of optima,
number of local and global optima.
� Clustering algorithms: the above together with the shape of regions of
attraction.
� Population based algorithm with focus on success rate: number, orien-
tation (Hessian) of components of lower (limit) level sets.
� Hit and Run, MC type of algorithms with focus on expected number
of function evaluations: barriers, creeks and rivers, location, orienta-
tion and number of saddle points.

4.4. USEFUL INFORMATION

If we want to look for weaknesses and strengths of algorithms we should
consciously look for extreme cases with respect to these characteristics. It
may be hard to measure characteristics from given test cases. Various
graphical techniques predict the success of some random schemes. The
graph of the relative measure of the improving region versus function values
predicts the success of some random schemes. In [4] a characterizing graph-
can be found that determines how successful it is to do more or less local-
searches. A clear drawback of this characterization is the difficulty of
finding the complete graph describing the relevant structure of the land-
scape.
From the perspective of designing algorithms, running them empirically

may generate information about the landscape of the problem to be solved.
A list of information one could measure during running a stochastic GO
algorithm on a black box case from [5] is useful:

� Graphical information on the decision space.
� Current function value.
� Best function value found so far (record).
� Number of evaluations in the current local phase.
� Number of optima found.
� Number of times each detected minimum point is found.
� Estimates of the time of one function evaluation.
� Estimates of the number of function evaluations for one local search.
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� Estimates of the likelihood2 the optimum has been reached.

5. Classification of Algorithms

Stochastic methods are understood to contain some stochastic elements.
Either the outcome of the method is a random variable or the objective
function itself is considered a realization of a stochastic process. For an
overview on stochastic methods we refer to Törn and Zilinskas [12] and
Boender and Romeijn [2]. Apart from the continuity of f, the methods in
general require no structure on the optimization problem and therefore are
generally applicable. If we want to compare algorithms, then it is useful to
do this from the perspective of the same information being used and the
same characteristics mattering. A partial classification is:

� Random function approaches (Kushner, Mockus, Zilinskas) where
the outcome of the function is considered a stochastic variable up to
the moment it is evaluated. Actually it is a deterministic approach in
the sense that no stochastic variables are used to generate new points,
but a stochastic model is used to describe the (random) function
given all former iterates. Perhaps this is most relevant for tackling
noisy objective functions.

� Simple multi-start approaches, where multi-start is mixed with PRS
(multi-singlestart) to generate random starting points.

� Clustering algorithms.
� Hit and run type of approaches where the next iterate depends on

current iterate and an acceptance/rejection rule.
� Population based algorithms which generate offspring and select

according to a fitness criterion.

6. Summary and Discussion Points

� Results of investigation of SGO algorithms consist of a description of
the performance appropriate to the algorithms (parameter settings)
and characteristics of test functions or function classes.

� The target of an assumed user and what is considered as success is
needed to obtain good performance criteria.

� The performance graph is a useful instrument to compare algorithms.

2For this a probability model is needed or simple considerations such as can be found in the early

Karnopp result, see [9]. Measuring and using the information in the algorithm usually leads to more

extended algorithms with additional parameters complicating the analysis of what constitutes good

parameter settings.
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� Relevant characteristics depend on the type of algorithm and perfor-
mance criterion under consideration.

� Landscape has to relate to both the algorithm and the function being
optimized.

� Algorithms, to be comparable, must make use of the same informa-
tion, accuracies, principles etc.

� It is wise to include simple benchmark algorithms like PRS, PAS and
Multi-start as references.

� A generic algorithmic description for all SGO algorithms does not
exist.
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